OBTAINING PERSISTENT LINKS
IEEE (ASPP and POP: All-Society Periodicals Package and Proceedings Order Plan)

Please note: Not all titles in *IEEE Xplore* are available through Seneca Libraries’ *IEEE ASPP* and *POP* subscriptions. To see complete lists of the titles available to us, [click here](#) for *ASPP* journals and [click here](#) for *POP* proceedings. When you are in the database, click “Advanced Search” and limit your search to “My Subscribed Content” to get just this content.

ARTICLE OR DOCUMENT SEARCH

1. Click “Advanced Search”:

![IEEE Xplore Digital Library](image)

2. Under “Content Filter”, select “My Subscribed Content”:
3. **Perform a search:**
New simultaneous switching noise analysis and modeling for high-speed and high-density CMOS IC package design

Yungseon Eo; W.R. Eisenstadt; Ju Young Jeong; Oh-Kyong Kwon

IEEE Transactions on Advanced Packaging
Year: 2000 | Volume: 23, Issue: 2 | Journal Article | Publisher: IEEE

Abstract:
A new simple but accurate simultaneous-switching-noise (SSN) model for complementary metal-oxide-semiconductor (CMOS) integrated circuit (IC) package design was developed. Since the model is based on the sub-micron metal-oxide-semiconductor (MOS) device model, it can predict the SSN for today's sub-micron-based very large scale integration (VLSI) circuits. In order to derive the SSN model, the ground path current is determined by taking into account all the circuit components such as the transistor resistance, lead inductance, lead capacitance, and oscillation frequency of the noise signal. Since the current slew rate is not constant during the device switching, a rigorous analysis to determine the current slew rate was performed. Then a new simple but accurate closed-form SSN model was developed by accurately determining current slew rate for SSN with the alpha-power-law of a sub-micron transistor drain current. The derived SSN model implicitly includes all the critical circuit performance and package parameters. The model is verified with the general-purpose circuit simulator, HSPICE. The model shows an excellent agreement with simulation even in the worst case (i.e., within a 10% margin of error but normally within a 5% margin of error). A package design methodology is presented by using the developed model.

Published in: IEEE Transactions on Advanced Packaging (Volume: 23, Issue: 2, May 2000)

Page(s): 303 - 312

DOI: 10.1109/6.846649

Last updated: 3 September 2019
4. Copy-and-paste the URL from the address bar into a text editor:

https://ieeexplore-ieee-org.libaccess.senecacollege.ca/document/846649

5. Replace everything up to /document with...

...to get this...

This is now a persistent link to this particular article, accessible to Senecans only, but both on- and off-campus.
Persistent links to periodical titles (journals, magazines, newspapers, etc.) are available through the search box on the Seneca Libraries homepage. This type of link will allow users to view all of the libraries’ holdings for specific titles.

1. Go to the Seneca Libraries homepage at http://library.senecacollege.ca/ and search for the name of a periodical:

2. Click the three dots over to the right to reveal the following options:

(...continued...)
3. Click “PERMALINK” to reveal this:

![Image of Seneca Libraries Advanced Search with PERMALINK highlighted]

4. You may either copy-and-paste the URL from the above box manually, or simply click “COPY THE PERMALINK TO CLIPBOARD” and it will copy it for you. You then paste the URL into emails, course webpages, etc. Always test the link before doing so.